Diketahuidua lingkaran dengan jari-jari berbeda. Jari-jari lingkaran pertama adalah 13cm. Jarak kedua pusat lingkaran tersebut adalah 20cm. Jika panjang gari singgung persekutuan luar kedua lingkaran tersebut adalah 16cm, maka panjang jari-jari lingkaran kedua yang tepat adalah
Blog Koma - Kedudukan Dua Lingkaran maksudnya posisi kedua lingkaran yang dibagi menjadi beberapa jenis. Untuk memudahkan mempelajari materi kedudukan dua lingkaran, sebaiknya kita menguasai dulu materi "persamaan lingkaran" dan "jarak dua titik" yang bisa dipelajari pada materi "irisan kedua lingkaran". Penjabaran Kedudukan Dua Lingkaran Jika terdapat dua lingkaran masing-masing lingkaran $L_1 $ berpusat di $ P $ dengan jari-jari $ R $ dan lingkaran $ L_2 $ berpusat di $ Q $ dengan jari-jari $ r $ di mana $ R > r $ maka terdapat beberapa kedudukan lingkaran sebagai berikut. i. $L_2$ terletak di dalam $L_1$ dengan $P$ dan $Q$ berimpit, Syarat $PQ = 0$. Dalam hal ini dikatakan $L_2$ terletak di dalam $L_1$ dan konsentris sepusat. ii. $L_2 $ terletak di dalam $L_1$ , syarat $ PQ R + r $, sehingga $L_1 $ dan $L_2$ saling terpisah. vii. $L_1$ ortogonal tegak lurus $L_2$ , syaratnya $ PQ^2 = R^2 + r^2 $ . viii. $L_1$ berpotongan $L_2$ tepat pada diameter salah satu lingkaran membagi dua bagian sama besar yaitu diameter garis warna merah, syaratnya $ PQ^2 = R^2 - r^2 $ . Keterangan $ PQ = \, $ jarak titik $ P \, $ dan $ Q $. Catatan Untuk menentukan kedudukan dua lingkaran, kita hitung dulu jari-jari dan titik pusat masing-masing lingkaran, kemudian kita hitung jarak kedua titik pusat, lalu cek apakah jarak pusat dan jari-jari masing-masing memenuhi jenis kedudukan yang mana seperti syarat di atas yang ada 8 syarat. Contoh 1. Tentukan kedudukan lingkaran $ L_1 x-1^2 + y+3^2 = 25 \, $ dan linkaran $ L_2 x+ 2^2 + y -1^2 = 9 $. Penyelesaian *. Menentukan jari-jari dan pusat masing-masing lingkaran. $ L_1 x-1^2 + y+3^2 = 25 $ Jari-jari $ r^2 = 25 \rightarrow r = 5 \, $ sebagai $ R = 5 $ Pusat lingkaran $ A a,b = A1,-3 $ $ L_2 x+ 2^2 + y -1^2 = 9 $ Jari-jari $ r^2 = 9 \rightarrow r = 3 $ Pusat lingkaran $ B a,b = B-2,1 $ *. Jarak titik pusat kedua lingkaran $ AB $ jarak titik A1,-3 dan B-2,1 $ AB = \sqrt{-2-1^2 + 1-3^2} = \sqrt{9 + 16} = \sqrt{25} = 5 $ *. Cek kedudukan kedua lingkaran, $ AB = 5, \, R = 5, \, r = 3 $ $ AB = 0 \, $ tidak memenuhi $ AB R + r \, $ tidak memenuhi $ AB^2 = R^2 + r^2 \, $ tidak memenuhi $ AB^2 = R^2 - r^2 \, $ tidak memenuhi Karena yang memenuhi $ R - r < AB < R + r \, $ , maka kedua lingkaran berpotongan.! Untuk lebih jelasanya, berikut gambar kedua lingkarannya Untuk lebih memantapkan pemahaman tentang kedudukan dua lingkaran, sebaiknya teman-teman juga membaca artikel "variasi soal kedudukan dua lingkaran". Menentukan titik potong atau titik singgung dua lingkaran Langkah-langkah menentukan titik potong atau titik singgung kedua lingkaran, yaitu *. Eliminasi kedua persamaan lingkaran sehingga terbentuk persamaan garis. *. Substitusi persamaan garis yang ada ke salah satu lingkaran, lalu tentukan nilai $ x \, $ dan $ y $ . Contoh 2. Tentukan titik potong kedua lingkaran pada soal nomor 1 di atas. Penyelesaian *. Menjabarkan kedua persamaan lingkaran. $ L_1 x-1^2 + y+3^2 = 25 \rightarrow x^2 + y^2 - 2x + 6y = 15 $ $ L_2 x+ 2^2 + y -1^2 = 9 \rightarrow x^2 + y^2 + 4x + -2y = 4 $ *. Eliminasi kedua persamaan lingkaran , $ \begin{array}{cc} x^2 + y^2 - 2x + 6y = 15 & \\ x^2 + y^2 + 4x + -2y = 4 & - \\ \hline -6y + 8y = 11 & \end{array} $ *. Substitusi garis ke lingkaran kedua $ -6x + 8y = 11 \rightarrow y = \frac{1}{8}11 + 6x $ $\begin{align} x^2 + y^2 + 4x + -2y & = 4 \\ x^2 + [\frac{1}{8}11 + 6x]^2 + 4x + -2[\frac{1}{8}11 + 6x] & = 4 \\ x^2 + \frac{1}{64}36x^2 + 132x + 121 + 4x -\frac{2}{8}11 + 6x & = 4 \, \, \, \, \text{kali 64} \\ 64x^2 + 36x^2 + 132x + 121 + 256x -1611 + 6x & = 256 \\ 64x^2 + 36x^2 + 132x + 121 + 256x -171 - 96x & = 256 \\ 100x^2 + 292x - 306 & = 0 \, \, \, \, \text{bagi 2} \\ 50x^2 + 146x - 153 & = 0 \\ a = 50, \, b = 146, \, c & = -153 \end{align} $ Gunakan rumus ABC $ x = \frac{-b \pm \sqrt{b^2 - \, $ pada persamaan kuadrat. $\begin{align} 50x^2 + 146x - 153 & = 0 \\ a = 50, \, b = 146, \, c & = -153 \\ x & = \frac{-b \pm \sqrt{b^2 - \\ x & = \frac{-146 \pm \sqrt{146^2 - \\ x & = \frac{-146 \pm \sqrt{51916}}{100} \\ x & = \frac{-146 \pm 227,8}{100} \\ x & = \frac{81,8}{100} \\ x_1 & = 0,818 = 0,8 \\ x & = \frac{-146 - 227,8}{100} \\ x & = \frac{-373,8}{100} \\ x_2 & = -3,738 = -3,7 \end{align} $ *. Substitusi nilai $ x $ ke persamaan garis $ y = \frac{1}{8}11 + 6x $ $ x_1 = 0,8 \rightarrow y_1 = \frac{1}{8}11 + 6x = \frac{1}{8}11 + 60,8 = 1,98 $ $ x_2 = -3,7 \rightarrow y_2 = \frac{1}{8}11 + 6x = \frac{1}{8}11 + 6-3,7 = -1,4 $ Jadi, titik potong kedua lingkaran adalah , dan ,Diketahuidua lingkaran berbeda dengan jarak antara pusatnya . Jika diameter lingkaran pertama adalah , maka panjang diameter maksimal agar kedua lingkaran tesebut memiliki garis singgung persekutuan dalam adalah
Diketahui dua lingkaran dengan jari-jari berbeda. Jika jarak kedua pusat lingkaran tersebut adalah 20 cm dan panjang garis singgung persekutuan dalam kedua lingkaran adalah 16 cm, manakah pasangan jari-jari kedua lingkaran tersebut yang sesuai? A. 7 cm dan 4 cmB. 7 cm dan 5 cmC. 4 cm dan 9 cmD. 6 cm dan 8 cmJawaban B. 7 cm dan 5 cmDiketahuidua lingkaran berbeda dengan jarak antar pusatnya 10 cm. Jika panjang diameter lingkaran pertama adalah 8 cm, maka panjang diameter maksimal agar kedua lingkaran tersebut memiliki garis singgung persekutuan dalam adalah A. 11 cm B. 12 cm C. 13 cm D. 14 cm Pembahasan :